Digital Video for BICSI Folks

Karl Rosenberg
Regional Applications Specialist
Extron Electronics

Agenda

- Digital Video Signal Characteristics
 - EDID and HDCP
- Digital Signal Types
 - USB and HDMI
- Resolution and Color
- Transmission Methods

Digital Video Signal Characteristics

Introduction

- Technology is constantly evolving
 - Video formats

• This evolution creates AV system design challenges

Signal Integrity

- Distance and quality how far is too far?
- Cable quality are all cables the same?
- Cables or electronics?
- Connections how many connection points?

Signal Integrity

Digital video signal loss – cliff effect

LCD Monitor

Digital Video Characteristics – Eye Diagram

- An Eye Diagram is formed by repeated sampling of a digital signal
 - The eye pattern is a useful tool in measuring overall signal quality

Digital Video Characteristics – Bit Errors

- The mask allows you to identify when bit errors occur
- The signal touching the mask is an indication of a bit error

Digital Video Characteristics – Loss

- Digital video signals consist of high speed transitions
- Very susceptible to degradation from:
 - Cable attenuation
 - Cable capacitance
 - Cable resistance
 - Impedance mismatch
 - Noise coupling
 - Crosstalk
 - Jitter
- All factors that affect the receiver's ability to distinguish high and low transitions

Digital Video Characteristics – Loss

- Difficult to anticipate
 - Image quality does not degrade like analog
- Cliff effect
 - Occurs when the receiver can no longer distinguish high and low values
 - Too many bit errors have occurred

EDID

Extended Display Identification Data

2017
BICSI CANADIAN
CONFERENCE & EXHIBITION
MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

EDID - Data

- EDID contains the following information:
 - Sink identity device type, model number, etc.
 - Sink capability video/audio
 - Video timing parameters, color space, audio formats, etc.
- EDID also defines the data structure
 - Block 0 128 byte of hexadecimal data
 - Block 1 additional 128 byte of hexadecimal data
 - Block 1 was added in version 1.3

EDID – Sequence

- 1. Power on PC or activate external graphics card
- 2. Computer requests EDID data from display
- 3. Display sends EDID data to computer
- 4. Computer attempts to match display parameters

EDID Minder

 Provides communication to the connected source to ensure it boots up using the correct video/audio output parameters

Scaler Solution

- BYOD equipment with Scaler/EDID Minder
 - Resolution management

- Reformats signal for system requirements
- Delivers consistent resolution to endpoints

HDCP

High-bandwidth Digital Content Protection

HDCP - Protocol

- HDCP protocol is a 3-phase process
 - Authentication
 - Content encryption
 - Renewability
- This can take a few moments depending on the number of downstream devices

Challenges: HDCP

- Many sources encrypt playback of high value content
- Content encrypted with HDCP
- Typical sources are:
 - Blu-ray players
 - Cable/satellite receivers
 - PC, Mac and iOS devices
- HDCP can negatively affect switching performance
- Some devices unnecessarily encrypt output

What If You Get It Wrong?

- Slow source switching
- Streamed content may not work as expected
- System may fail to display an image
- Can be difficult to troubleshoot

HDCP Handshakes

• I/O authentication

HCDP Handshakes With Products That Are Not HDCP Compliant

Visual confirmation

Digital Signal Types

USB and **HDMI**

Digital Signals – USB

- A standard for communication protocols that includes cables and connectors
- Historically used for attaching peripheral devices to computers

Digital Signals – USB

- Over the years speeds have increased and USB supports video and audio transfer
 - USB 2.0 480 Mbps
 - USB 3.0 5 Gbps
- Providing additional options for transporting video and audio

USB Type-C

- Latest, high speed, reversible USB
- 10Gbps data rate (V3.1), V3.0 = 5Gbps
- Deliver up to 100 watts! Devices negotiate...
- Supports "alternate modes"... like DisplayPort
- "...beyond 20 Gbps in the future."
 - Pres. USB-IF

USB 3.1 Types-C hub

Digital Video Signals – HDMI

- HDMI is an uncompressed digital video signal
 - Designed for the consumer market
- Adds support for:
 - Audio stereo and surround formats (PCM, Dolby, DTS)
 - YCbCr color space optional
 - HDCP optional but recommended
 - CEC Consumer Electronic Control optional
 - InfoFrames

HDMI – Connectors, Distance, Communication

Standard Mini Micro

Mini

- Added in HDMI version 1.3
 Micro
- Max resolution 1080p

HDMI specification does not define transmission distance

Cable performance has a direct bearing on distance

EDID information is sent from the display to the source

Required by HDMI specifications

HDMI 2.0

New functionality includes

- Enables transmission of HDR High Dynamic Range video
- Signaling speed to 18 Gbps
- 4K@50Hz/60Hz, (2160p)
 - 4 times the clarity of 1080p/60 video resolution
- Up to 32 audio channels with up to 1536 kHz audio sample frequency
 - 32 channels @ 48kHz each
- Dual video streams on same screen, 4 audio streams
- Support widescreen 21:9 format
- Dynamic sync of audio/video
- CEC extensions with expanded control via single point

Resolution

4K / UHD and 1080p Video Signals

Resolutions

- **Old Resolutions**
- New standard 1080p

4K Video Signal – What You Need to Know

- Data rate requirements determined by
 - Resolution
 - Refresh rate
 - Chroma sampling
 - Color bit depth
 - Maximum supported data rate

4K Signal Parameters

2160

- 4K DCI is 4096x2160
 - Four times the resolution of 2K DCI
 - Targeted towards digital cinema
- 4K refresh rates
 - Varies 24 Hz up to 60 Hz
- Color bit depth
 - 8-Bit, 10-bit, and 12-bit
- Aspect Ratio
 - 17:9 same as 2K

4096

Ultra HD Video Signal Parameters

- Ultra HD is 3840x2160
 - Four times the resolution of 1080p
 - Targeted towards consumer and broadcast markets
- Ultra HD refresh rates
 - Varies 24 Hz up to 60 Hz
- Color bit depth
 - 8-Bit, 10-bit, and 12-bit
- Aspect Ratio
 - 16:9 same as 1080p

4K and Ultra HD Resolution Comparison

Wide Color Gamut

- UHD proposes a significantly broader color space standard
 - Rec. 2020 supports a very wide color gamut

CIE 1931 chromaticity diagram

Ultra HD Color Bit Depth

 For UHD to achieve the full color spectrum of REC-2020, greater color bit depth is required

HDR – High Dynamic Range

- Produces video with a greater contrast range closer to what the human eye perceives
 - Color gamut is technically not part of HDR but goes hand in hand since greater contrast and brightness will display more colors

Standard Dynamic Range

High Dynamic Range

UHD Alliance Premium Certified

- Rating applied to displays that meet or exceed certain performance minimums for Ultra High Definition displays
 - Specs include High Dynamic Range and Wide Color Gamut, brightness and more
 - Resolution: 3840x2160 pixels
 - Color depth: 10-bit
 - Color gamut: Wide, including the ability to show at least 90% of the P3 color gamut

4K Applications with HDMI

Optimal 4K parameters depend on the application

4K Applications with HDMI: Requirements and Compromises										
Application	Refresh Rate	Color Bit Depth	Sub- sampling	Color Space Version	HDMI Version	Comments				
Consumer/Residential	60Hz	8-bit	4:2:0	BT.709	1.4	Single Cable				
Digital Signage	60Hz	8-bit	4:2:0	BT.709	1.4	Dynamic Content – Single Cable				
	30Hz	10-bit	4:4:4	BT.2020	2.0	Static Content – Single Cable				
Corporate Presentation	30 Hz	8-bit	4:4:4	BT.709	1.4	Single Cable				
Graphic Workstations	30Hz	8/10/12bit	4:4:4	BT.709/ BT.2020	1.4/2.0	Single Cable				
Special Applications (Medical/VR/Military)	High Frame Rate (>60Hz)	12/16bit	4:4:4	BT.2020	2.0	Multi-Lane signal paths				

Transmission Methods

CAT Cable

Why Use Twisted Pair?

- One twisted pair cable can carry multiple signals
 - Video
 - Audio
 - Bidirectional RS-232 control and IR
 - Ethernet
 - Remote Power

Twisted Pair Transmission

- Distance
 - 328 feet (100 meters) between endpoints

328 feet/100 meters

XTP Twisted Pair Transmission

- Distance
 - 328 feet (100 meters) between devices

Twisted Pair Transmission

Cable

- Supports CATx cable
- Solid conductor, shielded twisted pair cable with shielded connectors should always be used
- Skew-free cable should not be used with XTP Systems

Twisted Pair Signal Transmission

- Shielded cable protects against outside interference from:
 - Air conditioning units
 - Power from adjacent cabling
 - Crosstalk from other cables or within the same cable
 - Radio interference from walkie-talkies

- Image drop-out or flashing
- No image at all

Twisted Pair Shielding

Different types of twisted pair shielding

Cable Name	Outer Shielding	Individual Pair Shielding		
U/UTP	None	None		
F/UTP	Foil	None		
U/FTP	None	Foil		
S/FTP	Braided	Foil		
SF/UTP	Braided & Foil	None		

Twisted Pair Signal Transmission

Types of Category cable

Cable	Gauge	Conductor	Outer Shield	Pair Shielding	Required Bandwidth	Crosstalk Loss
CAT 5e (U/UTP)	24	Solid	None	None	100 MHz	~27dB
CAT 5e (F/UTP)	24	Solid	Foil	None	100 MHz	~27dB
CAT 6 (U/UTP)	24-23	Solid	None	None	250 MHz	~37dB
CAT 6 (STP)	24-23	Solid	Foil	None	250 MHz	~37dB
CAT 6a (U/UTP)	24-23	Solid	None	None	500 MHz	~37dB
CAT 6a (F/UTP)	24-23	Solid	Foil	None	500 MHz	~37dB
CAT 6a (U/FTP)	24-23	Solid	None	Foil	500 MHz	~37dB
CAT 6a (SF/UTP)	24	Solid	Braid and Foil	None	500 MHz	~37dB
CAT 7 (S/FTP)	24	Solid	Braid and Foil	Foil	600 MHz	~60dB
CAT 7a (S/FTP)	24	Solid	Braid and Foil	Foil	1 GHz	~60dB

Twisted Pair Installation

- Cable infrastructure and patch points
 - Up to 2 patch points recommended

Typical scenario for AV connectivity

Fiber

Benefits of Fiber in AV Systems

- Secure transmission
- Resistant to ground loops
- Low attenuation
- EMI/RFI immunity
- Lightweight
- Connector install speed
- Future-proof system

Fiber Optics Fundamentals

- A basic fiber optic system contains three parts
 - Transmitter (electrical to optical conversion)
 - Fiber optic cabling (light transmission)
 - Receiver (optical to electrical conversion)

Fiber Optic Cable Performance

- Fiber is categorized by performance and function
- Multimode fiber has four classifications
 - OM1 and OM2 fiber were built for LED systems
 - Typically supports up to 100 Mb networks
 - Low bandwidth performance
 - OM3 and OM4 are designed to work with LASERS
 - Supports 10 Gb networks
 - Can carry high bandwidth signals long distances
- Singlemode fiber has two classifications
 - OS1 and OS2

Singlemode

Fiber Equipment Selection

Fiber Optic Cable Performance

Wireless

Wireless Video Applications

 Point-to-point applications where source video signal is converted to a modulated RF signal for wireless transmission to a receiver connected to a display BYOD applications where computing device encodes and transmits video content over a Wi-Fi network to a receiver connected to a display

Wireless Video Applications

- No computing device required simple signal extension
 - Real-time performance extremely low latency
 - High video quality maintains resolution, refresh rate, color depth
 - Works with more types of video sources
 - Entire bandwidth is dedicated to video

- Wide availability of networking and compression technologies
 - Receiver is the only hardware required
 - BYOD devices already have Wi-Fi built-in
 - Loaded software can perform video compression
 - Mobile device acts as transmitter

Mirroring iOS Devices

- Works for Apple iPads and iPhones
- Use Control Center on your iOS device
 - Swipe 'up' for Control Center
 - Select ShareLink from Airplay Device List
 - Disconnect when done

Wireless Collaboration

• Simultaneously share up to 4 different devices

Digital Video for BICSI Folks

Karl Rosenberg, Regional Applications Specialist Extron Electronics

2017
BICSI CANADIAN
CONFERENCE & EXHIBITION
MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

