

# There's no time like the present!

April 2018

#### **Ashley Martin**

Manager, Field Application Engineering MTDC, HyperScale – South Pacific



# "The world is changing very fast. Big will no longer beat small. It will be the **fast beating the slow.**" Rupert Murdoch









AI, and especially Machine Learning, is making everything *scale faster and at lower cost*.

**Nielson's Law:** Bandwidth doubles every 21 months (~45% CAGR)

**Comcast:** Bandwidth doubles every 18 months (~60% CAGR)

**Emerging trends** expected to fuel increase in connectivity and data:

























### Network owners are having to change



#### **HyperScale**

Invest in space Cellular

Wi-Fi

Invest



#### **Service Provider**

Fixed Wireless Access

Content

In home opps

RF

Edge DC



#### **Enterprise**

SaaS

MTDC/ Cloud DC
Private LTE



#### In Building

Wireless (Wi-Fi?)

Ownership from operator to building owner

WiFi or unlicensed LTE?

IoT?







#### **Network Changes/ Effects**



More Macro sites
Multi use of fibre
NGPON2
adoption

MTDC
Spine/Leaf
AOC
Silicon
Photonics
MM vs SM
Reliability





Edge
Computing
Edge/ Cloud
DC
Higher Freq
Spectrum
mgmt

FTTX
3G/LTE/5G
Virtualisation
SDN/NFV









# Mobile Edge Computing: Data Centres moving closer to the Edge

Core
Compute
High Latency
Centralised
Client owned



Edge
Compiuting
Low Latency
Distributed
Co-Located/
POP



Service Provider prime locations 2017 This Is What Happens In An Internet Minute



By 2025 60% of cloud servers will be deployed in Edge locations







## Converged Access Network Architecture

Networks should to be designed and constructed keeping cost, flexibility and capacity in mind



Distribution

Central Office/C-RAN hub/Data Centre











# SDN - Software Defined Networking

#### **TRADITIONAL ARCHITECTURE**

app

No centralised control/orchestration. Each element individually touched. Static Routing.



#### **SDN** app app app SDN controller contro data control control data data

IP traffic







#### NFV - Network Function Virtualization











#### So how do we transmit this data?





#### So how to we transmit this data?



# SPINE Cross-Connect LEAF OM5 Trunk OM5 Trunk





#### Increased use of TAP/ Monitors

#### Passively monitor network links without impacting traffic

- Non-intrusive troubleshooting
- No IP address or power required
- Lawful intercept
- Network performance monitoring









### Copper – multigigabit changes

- Class D (Cat 5e) and Class E (Cat 6) are not fully specified to support the requirements of 2.5GBASE-T or 5GBASE-T
- ISO/IEC TR 11801-9905 / TIA TSB-5021 provide guidelines to qualify existing Class D and Class E (Cat 6) installations
  - ALSNR risk assessment guidelines
  - Mitigation steps
  - Category 6A recommended for new installations
- ISO/IEC 11801 3<sup>rd</sup> Edition
  - Upgrades minimum office cabling to Class E (Cat 6)
  - Recommends Class E<sub>A</sub> (Category 6A) in Offices to support applications above 1 Gb/s

|                  |       | ass D (Cat    |              |               |
|------------------|-------|---------------|--------------|---------------|
| Bundled Distance | Speed | Victim Length |              |               |
|                  |       | 1 m to 20 m   | 20 m to 75 m | 75 m to 100 m |
| Up to 20 m       | 2.5G  | Low           | Low          | Low           |
|                  | 5G    | Low           | Low          | Medium        |
| 20 m to 75 m     | 2.5G  | N/A           | Low          | Medium        |
|                  | 5G    | N/A           | Medium       | High          |
| 75 m to 100 m    | 2.5G  | N/A           | N/A          | Medium        |
|                  | 5G    | N/A           | N/A          | High -        |
|                  | C     | lass E (Ca    |              |               |
| Bundled Distance | Speed | Victim Length |              |               |
|                  |       | 1 m to 20 m   | 20 m to 75 m | 75 m to 100 m |
| Up to 20 m       | 2.5G  | Negligible    | Low          | Low           |
|                  | -     |               |              |               |

N/A

2.5G

2.5G

20 m to 75 m

75 m to 100 m

ISO/IEC

#### Class $E_{\Delta}$ (Cat 6A)

| Bundled Distance | Speed | Victim Length |              |               |  |
|------------------|-------|---------------|--------------|---------------|--|
|                  |       | 1 m to 20 m   | 20 m to 75 m | 75 m to 100 m |  |
| Up to 20 m       | 2.5G  | None          | None         | None          |  |
|                  | 5G    | None          | None         | None          |  |
| 20 m to 75 m     | 2.5G  | N/A           | None         | None          |  |
|                  | 5G    | N/A           | None         | None          |  |
| 75 m to 100 m    | 2.5G  | N/A           | N/A          | None          |  |
|                  | 5G    | N/A           | N/A          | None          |  |

Multigigabit developments driving increased adoption of Category 6A cabling in buildings







# Network Challenge – Providing Power and Comms to Edge Devices











## Solving the Power and Comms Challenge



**Consider:** 

WDM?

**Daisy Chain powered** 

devices?







#### **Key Takeaways**



#### Convergence

Network
Convergence will be a necessity to cater for all the future demands of the network



# The future is here

The demand for bandwidth, low latency and capex/opex savings drives virtualization and edge computing



Network operators
need to be able to
support multiple
network applications
on a single network.
In order to support
edge computing and
SDN/NFV, data centre
architectures will be
deployed in central
offices



#### Migration ready

The data centre architectures in the central office need to focus on providing the required density and flexibility in a High Speed Migration structured cabling solutions that must be able to support the next generations of applications







## THANK YOU

Ashley Martin

Ashley.martin@commscope.com