Field Testing and Troubleshooting of PON LAN Networks per IEC 61280-4

Jim Davis
Regional Marketing Engineer
Fluke Networks

Agenda

- Inspection and Cleaning
 - APC vs UPC
- PON basics
 - Wavelengths
 - Architecture
 - Splitters
- Loss Budget how many Connectors/Splitters
 - Setting a reference
 - Far End Source
- Troubleshooting
 - Where to connect?
 - OTDR
 - Power Meter
- Document Results

Inspection, and, if necessary, Cleaning (repeat as needed)

Please be sure to Inspect ALL Connectors before installing, clean them if necessary, inspect again!!

Video Microscope

Brand new out of bag

After Cleaning

Automated Analysis – Single Mode APC Limits

IEC 61300-3-35 ED.2 SM APC

Zone Name	Scratches	Defects
A: Core (0-25μm)	4 ≤ 3 μm None > 3 μm	None
B: Cladding (25-115μm)	No Limit	No Limit < 2 μm 5 from 2 - 5 μm None > 5 μm
C: Adhesive	No Limit	No Limit
D: Contact (135-250 μm)	No Limit	No Limit < 10 μm None > 10 μm

That little angle on the APC minimizes back reflection

Especially important with high-power transmissions to avoid damage to equipment

APC Tips have a slight bend – these are SC

APC connectors may need a "Twist" to show up

Single Mode MPO connectors will also require a special adapter

UPC vs APC Reflectance

UPC vs APC Reflectance

Back to Passive Optical Networks

"Flavors" of Passive Optical Networks

- E-PON and G-PON most common today
- 10G or XG-PON, NG-PON, NG-PON2
- TBD-PON
- FTTx
- PON-LAN
- We don't care what you put on the road we want to make sure the road is in good shape to support today's applications
 - Loss Budgets, Distances, Reflectance limits may be tighter with future versions

'basic' PON architecture

Basic PON LAN Layout

Fiber Concentration Point (FC/FCP)

Fiber Distribution Terminal (FDT)

Fiber Distribution Hub (FDH)
DataCenter/MDF Single Administration Point

Multiple Wavelengths λ One Fiber

OLT – Optical Line Terminal

ONU – Optical Network Unit (ONT – Optical Network Terminal)

Splitters – Putting the *P*assive in *P*ON

Multiple Wavelengths λ One Fiber - Split

OLT – Optical Line Terminal

ONU – Optical Network Unit (ONT – Optical Network Terminal)

Splitters as the name suggests divide the light

- Think of a splitter like a "Y" on a garden hose
 - If you put a gallon of water into the hose,
 you will get ½ gallon on each port
 - In optical power, that "loss" would be expressed as 3 dB
 - And a little bit for the connectors more for SC or LC connectors than a fusion splice
 - A 1 x 2 splitter should have about 3.5 dB of loss

As you increase the split, you attenuate the light that is coming out of a splitter

- A 1 x 2 = 3.5 dB of loss
- $1 \times 4 = 7 dB of loss$

As you increase the split, you attenuate the light that is coming out of a splitter

- A 1 X 2 = 3.5 dB of loss
- 1 X 4 = 7 dB of loss
- 1 X 8 = 10.5 dB of loss

As you increase the split, you attenuate the light that is coming out of a splitter

Loss Budget per Split per TIA-568 Annex D

Maximum permitted loss 3.9 dB

Test of PON Networks

What To Test – Per IEC 61280-4-3

- Single Stage Optical Distribution Network (ODN)
- Multiple Stage ODN
- Attenuation
 - Light Source and Power Meter
 - 1310 and 1550 nm
 - OTDR (only in the upstream direction)
- ORL and Reflectance
 - OTDR

We don't need to test every wavelength to identify problems – they are bound If one of two wavelengths is off – there is a problem

Here is an example of a cracked fiber that was identified by testing at 1310 and 1550 nm

At 1550 nm, you can see the Problem

Loss Budget Calculation

What loss budget to use when testing

- There can be different loss budgets that can be used
 - A Cabling limit, like the one called out in the IEC standard
 - Cable + Connectors + Splitters
 - An active equipment limit depends on equipment
 - Fixed value 27 dB

Loss Budget Calculation

Loss testing with minimal uncertainty and maximum repeatability

Accurate Loss Testing will assure support for today's and future network applications

- A One Jumper reference is called out in the standard
- A Simple Light Source and Power Meter can be used, or you can use common OLTS units, provided they can be put into a "Far End Source Mode"

Pressing this button again sets the singlemode port to 1310/1550 nm

Single fiber testing – setting a reference

- Connect the MAIN and SOURCE units together
 - One Jumper Reference
 - Must have input port that is the same as the connector to be tested

Single fiber testing – setting a reference

- After the reference is set, verify the condition of the other Test Reference cord
- Save this in your test results!

Single fiber testing – setting a reference

Connect to the link you wish to test

Sample Test Results

Cable ID: HGI ROOM 204

Date / Time: 12/29/2017 09:28:09 AM Cable Type: OS2 Singlemode

n = 1.4670 (1310 nm) n = 1.4680 (1550 nm) **Test Summary: PASS**

Backscatter Coefficient: -79.5dB (1310 nm) Backscatter Coefficient: -82.0dB (1550 nm)

Loss (R->M)

Date / Time: 12/29/2017 09:28:09 AM Test Limit: *4 PORT & 8 PORT*

Operator: Jim

certifiber pro (17455007 v5.3 build 20171229

Module: CFP-QUAD(2427616)

	1310 nm	1550 nm
Result	PASS	PASS
Loss (dB)	18.34	17.47
Limit (dB)	20.50	20.50
Margin (dB)	2.16	3.03
Reference (dBm)	-2.66	-2.73

Connector Type: LC Patch Length1 (m): 2.0

Reference Date: 12/29/2017 09:08:10 AM

1 Jumper

Sample Test Results - Detail

Alternate Loss Budget Calculation

GPON

- Single Mode light
- Often, they can ac
 - Usually -27 dBm

- De acordo com o padrão GPON ITU-T G.984.x;
- Transmissor de 1.244Gbps sentido upstream em mod
- Receptor de 2.488Gbps sentido downstream;
- Comprimento de onda de transmissão: 1310nm;
- Comprimento de onda de recepção: 1490nm;
- Framing totalmente compatível com ITU-T G.984;
- Múltiplos T-CONTs por dispositivo;
- Múltiplos GEM Ports por dispositivo;
- Suporta modo Single T-CONT ou modo Multiple T-C(
- Mapeamento flexível entre GEM Ports e T-CONTs;
- Forward Error Correction (FEC);
- Suporte para Multicast GEM Port;
- Mapeamento de GEM Ports em um T-CONT com filas de prioridade:
- Potência Óptica de Transmissão: 0,5dBm ~ +5dBm
- Potência Óptica de Recepção: -8dBm ~ -27dBm
- BBF TR.156 Using GPON in the context of TR.
- Advanced Encryption Standard (AES)
- Forward Error Correction (FEC)
- Class B+ optics (28dB)

Alternate Loss Budget Calculation

- Single Mode light sources are very powerful
- Often, they can accept any amount of light down to a given level
 - Usually -27 dBm
 - Rule of thumb give yourself some margin 3 dB?
- When troubleshooting or testing with the OLT installed check for greater than -27 dBm in the POWER mode, not LOSS mode
 - - 26 dBm is greater than -27 dBm
 - -28 dBm is less than -27 dBm

The Button in this example changes from one to the other

Alternate Loss Budget Calculation

- Single Mode light sources are very powerful
- Often, they can accept any amount of light down to a given level
 - Usually -27 dBm
 - Rule of thumb give yourself some margin 5 dB?
- When troubleshooting or testing with the OLT installed check for greater than -27 dBm in the POWER mode, not LOSS mode
 - - 26 dBm is greater than -27 dBm
 - -28 dBm is less than -27 dBm

^{*} Laser source, not OLT

OTDR testing

- Used to measure loss and reflectance of events
- Upstream only
- Requires a launch and tail cord
 - Cords should have close backscatter coefficient to link under test
- Shall be capable of using a short pulse ≤ 20ns
- Check the launch a receive cords prior to testing (B.6.2)

Upstream OTDR Testing

Downstream Testing

Troubleshooting Links

Did you try rebooting?

iber tch – in this provide copper o phone, PC, VAP, etc. Troubleshooting a live network with an OTDR

Filtered test configuration for POLAN

OTDR

- When troubleshooting a connectivity issue you need to be able to connect into a live system with an OTDR to troubleshoot without disturbing the system and without the POLAN signals interfering with the OTDRs measurements.
 - A 1625nm Live Fiber Filter allows the OTDR to use an out of band 1625nm test wavelength to meet this purpose.
 - 1625nm will not interfere with the active POLAN signals
 - The filter blocks the 1310nm, 1490nm and 1550nm wavelengths from entering the OTDR port, preventing them from interfering with the measurement

Gotcha – don't plug ONT to OLT with 2 meter patch cord to check if it works ☺

Potência Óptica de Transmissão: 0,5dBm ~ +5dBm

Potência Óptica de Recepção: -8dBm - -27dBm

Documenting Results

Technician can | download test setups and cable IDs on the tester in the field

Project Manager can track job progress anytime

Technician can upload Test Results from the job site

Cloud based Storage Site

Asset Manager can track last used location, software version and calibration status*

Fiber Loss Measurements:

Date and Time of test:

Location:

Personel:

Reports Administrator can download test results

In Conclusion

- PON or POL is a valid alternative to pure copper networks
- Many niche markets are appearing
 - Hospitals
 - Hotels
 - Government
- Follow best practices for loss testing
 - One Jumper reference, accurate loss budget
- OTDRs can be used for Troubleshooting
 - Clean the fibers before you connect them!

Thank you, Gracias, Obrigado Jim Davis

Fluke Networks

Jim.Davis@flukenetworks.com 6920 Seaway Blvd Everett, WA 98271