The Real Impact of High-Power PoE on Your IP Network

Jason Finnegan, Product Manager – Copper Solutions, Legrand
Cindy Montstream, Director of Technical Support & Training, Legrand
Amir Sekhavat, Global Dir. Copper Product Mgmt & Enterprise Market Development, Superior Essex

Agenda

- PoE Drivers
- Relevant Standards
- What to know to ask the right questions
 - Cabling considerations
 - Component considerations
 - Channel considerations
- Case studies
 - Calculating power efficiency
 - Justifying capital expenditure

What is Power-over-Ethernet?

Traditional Way

What is Power-over-Ethernet?

Using PoE

Technology Has Changed Buildings

New customer experiences and innovation demand improved efficiencies

PoE Digital Building Endpoint Examples

Digital Building: Power & Data

PoE - Commercial Building Applications

PoE Infrastructure

LED Lighting 389

Phone, Client, Monitor 192

Display 16

Occupancy Sensors 8th

WAP 107

Shade Control 40

Security Camera 12

Access Controls

Total 853

Power-over-Ethernet

Related Standards & Codes

<u>Cabling, performance,</u> premises & best practices

Applications

• IEEE 802.3

TIA /TSB 184-A

- BICSI 005--2013
- BICSI 007--2017

<u>Codes</u>

NEC 2017

Power-over-Ethernet (IEEE802.3)

Standard	IEEE 802.3af	IEEE 802.3at	IEEE 802.3bt		HDBaseT
	PoE	PoE+	PoE++	4PPoE	РоН
Туре	1	2	3	4	N/A
Status	2003	2009	Ratifie	d Sept. 2018	Exists today
Maximum number of energized pairs	2	2	4	4	4
Maximum DC current per pair	350 mA	600 mA	600 mA	960 mA	1000mA
Maximum power delivered by the Power Sourcing Equipment (PSE)	15.4 watt	30.0 Watt	60.0 Watt	60.0 Watt 99.9 Watt	
Minimum required power at the Powered Device (PD)	12.95 Watt	25.5 Watt	51.0 Watt	71.0 Watt	>100W
Maximum Data Rate	1000BASE-T	1000BASE-T	10GBASE-T		Varies

TIA: What is TSB-184?

- > Technical Service Bulletin
- ➤ Provides guidelines for supporting power delivery over twisted-pair cabling simultaneously with data
 - Twisted-pair cabling defined in ANSI/TIA-568 series
 - Safety Extra Low Voltage (SELV) limited power source (LPS) power
 - Focus on temperature de-rating of cable
 - Comprehensive approach
 - Defines bundle sizes
 - Includes 26 AWG
 - Installation recommendations
- ➤ Describes methods to help manage temperature rise (≤15º)
 - Reduce long term cable degradation
 - Minimize negative effect on transmission performance
 - Reduce the amount of heat added to surrounding environment

TIA TSB-184-A

Guidelines for Supporting Power Delivery over Balanced Twisted-Pair Cabling

- Current has been increased to up to 1000 mA/pair.
- ➤ Models have been refined to include additional cable properties and installation conditions.
- > Temperature rise tables include temperature rise in open air and sealed conduit.
- > Bundling recommendations and installation recommendations have been added.
- ➤ Measurement procedures to develop models have been refined and included in the document.
- ➤ Includes additional specifications for *pair-to-pair dc resistance unbalance*.

TSB-184-A DC requirements

Energy consumption is related to the loop dc resistance -- heating in cabling will be related to the local dc resistance per unit length.

C Loo	p Resistance	of Channel	s at 60°C	

	Cat 5e 100m	Cat 6 100m	Cat 6A 100m	Cat 8 100m
Max dc loop resistance	25	25	25	7.22
Nominal dc loop resistance	24.38	20.09	20.09	6.81

Notes:

- 1. Dc loop resistance applies only to pairs that provide dc continuity end-to-end
- 2. All values are at or adjusted to 60° C.
- 3. Max values from ANSI/TIA-568.2-D

Larger conductor size reduces dc loop resistance improving power delivery efficiency & minimize heating.

TSB-184-A DC requirements

AWG DC Resistance at 20°C

AWG table	Ohms per 100m solid	Ohms per 100m stranded
table	Solid	Stranueu
23	7.32	6.92
24	9.38	8.76
26	14.8	14

Heating in cabling related to dc resistance per unit length.

Assumptions:

- > Category 5e horizontal cable is assumed to be 24AWG solid conductor cable
- > Category 6 horizontal cable is assumed to be 23AWG solid conductor cable
- > Category 8 horizontal cable is assumed to be 23AWG solid conductor cable
- ➤ All categories of cord cable are represented by 26AWG stranded cable

TSB-184-A DC requirements

DC Resistance directly impacts efficiency!

Table A.9 - Nominal power loss per meter of different cable types.

Current per pair	Number of Pairs	Category 5e	Category 6	Category 6A	Category 8
600 mA	2	39.08 mW	30.49 mW	30.49 mW	30.49 mW
600 mA	4	78.15 mW	60.99 mW	60.99 mW	60.99 mW
720 mA	4	112.54 mW	87.82 mW	87.82 mW	87.82 mW
1000 mA	4	217.09 mW	169.41 mW	169.41 mW	169.41 mW

TSB-184 Addendum 1 (draft)

Installation guidelines to support the delivery of power over 28 AWG cord cable

Table 2 - Temperature rise in air of 28 AWG cord cable v. number of cables in bundle for different

	curre	ent levels per pair								
Number	Temperature Rise (°C)									
of Cables	600mA per pair	720mA per pair	1000mA per pair							
in bundle	Air	Air	Air							
1	0.86	1.25	2.40							
7	2.67	3.84	7.41							
19	5.05	7.27	14.03							
24	5.91	8.51	16.41							
37	7.96	11.47	-							
48	9.58	13.80								
52	10.15	14.62								
61	11.41	16.43	-							
64	11.82		2							
74	13.16	¥	2							
91	15.38	2	-							

- Maximum number of 28 AWG cord cables in a bundle for 15 °C temperature rise at 20 °C and 45 °C ambient in air

	To carre to carrie	Total and			
Current	Number of ca	bles in bundle			
per pair	20 °C Ambient	45 °C Ambient			
600mA	88	77			
7z0m∆	53	Δ7			
1000mA	21	18			

TSB-184 Addendum 1 (draft)

Installation guidelines to support the delivery of power over 28 AWG cord cable

➤ When using high power (PoE Type 4)

Figure 1 - Example of 28 AWG cord cable bundles consisting of 12 cables separated by a minimum of 1.5 inches in an equipment rack using a 10 inch vertical manager

11

WORK IN PROGRESS

ANSI/TIA-568.2-D: 28 AWG Cord Addition

- Recognize twisted-pairs of 22 AWG to 28 AWG for cord cable
- 28 AWG cord cables shall comply with the mechanical performance requirements, testing and test methods as 22-26 AWG cord cables (additional requirements listed in Annex G)
- DC resistance of UTP or screened cord cable shall not exceed 23.6 Ω per 100 m (328 ft.) (20 °C) –Annex G
 - 27.3 Ω per 100 m (328 ft.) (60 °C)

Table G.3 – 28 AWG cord cable example use cases at 20 °C

Maximum permanent link length m(ft)	Maximum length of 28 AWG cord cable m(ft)	Maximum channel length m(ft)
90.0 (295.3)	6.2 (20.2)	96.2 (315.5)
82.5 (270.7)	10.0 (32.8)	92.5 (303.5)
72.8 (238.7)	15.0 (49.2)	87.8 (287.9)

At 60 °C the maximum permanent link and channel lengths are decreased due to the increased insertion loss in the horizontal cable as shown in the following equations.

Table G.4 - 28 AWG cord cable example use cases with permanent link at 60 °C

Maximum permanent link length m(ft)	Maximum length of 28 AWG cord cable m(ft)	Maximum channel length m(ft)							
75.0 (246.1)	6.2 (20.2)	81.2 (266.4)							
68.8 (225.7)	10.0 (32.8)	78.8 (258.5)							
60.7 (199.1)	15.0 (49.2)	75.7 (248.4)							
NOTE - This table assumes that the patch cords included in the channel are at 20 °C.									

BICSI Standards

BICSI 005-2013 Electronic Safety & Security

- Inclusion of IP based architecture
- Support for PoE
- Recommends Category 6 or better

BICSI Standards

BICSI 007-2017 Intelligent Buildings

- ➤ Equipment cords and coverage area cables used for data and power transmission should have conductors with a minimum size of 0.205 mm₂ (24 AWG).
- For new installations, consider using cabling with 0.326 mm₂ (22 AWG) conductors if:
 - The specific building system (e.g., audio systems, video displays) is expected to require power exceeding 50W during the life cycle of the building
 - Future flexibility is desired in the types of systems that could be supported.

NFPA – NEC 2017 code

NEC is for SAFETY -- not application, power usage or performance

- Section 840.160
 - Nothing required if less than 60 watts is used
 - If more than 60 watts is used
 - Comply to section 725.144 or OPTIONALLY comply to UL LP-Listing

AWG									Numbe	rof 4-Pa	air Cabl	es in a	Bundle								
		1			2-7			8-19			20-37			38-61			62-91			92-192	
	Te	mp Rati	ing	Te	mp Rat	ing	Te	mp Rati	ing	Te	mp Rati	ing	Te	mp Rati	ing	Temp Rating		ing	Te	Temp Rating	
	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C
26	1.0	1.0	1.0	1.0	1.0	1.0	0.7	0.8	1.0	0.5	0.6	0.7	0.4	0.5	0.6	0.4	0.5	0.6	NA	NA	NA
24	2.0	2.0	2.0	1.0	1.4	1.6	0.8	1.0	1.1	0.6	0.7	0.9	0.5	0.6	0.7	0.4	0.5	0.6	0.3	0.4	0.5
23	2.5	2.5	2.5	1.2	1.5	1.7	0.8	1.1	1.2	0.6	0.8	0.9	0.5	0.7	0.8	0.5	0.7	0.8	0.4	0.5	0.6
22	3.0	3.0	3.0	1.4	1.8	2.1	1.0	1.2	1.4	0.7	0.9	1.1	0.6	0.8	0.9	0.6	0.7	0.8	0.5	0.6	0.7

UL LP LISTING.....

New UL Limited Power (LP) certification:

- 1. CMP burn test
- 2. Cable Heating test
 - Create a bundle of 192 cables
 - Place in a 6ft long non-metallic conduit
 - Inject power
 - Check if the temperature increase is not higher than the cable rating
 - For 75°C rated cable and 45°C ambient temperature / no more than 30°C

CMP - Burn Test Results

Issues

- ➤ Based on UL test results only
- ➤ Inconsistent with TIA / IEEE
 - Bundle size different
 - Not same ampacity
 - Temperature reference different
 - UL is vs temperature rating
 - IEEE is temperature rating minus 10°C
 - TIA is ambiant temperature + 15°C

ISSUE

Temperature rating

- Min 60°C for insulation and jacket
- 75°C marking:
 - ? 75°C insulation and jacket
 - ? 75°C insulation and 60°C jacket
- 90°C marking:
 - ? 90°C insulation and jacket
 - ? 90°C insulation and 75°C jacket
- 105°C marking:
 - ? 105°C insulation and jacket
 - ? 105°C insulation and 90°C jacket

What happens if the cable is at 87°C?

The insulation is good but how is the jacket impacted during the time when it is rated for 75°C...

What you need to remember

- LP simplifies cable choice by pre-testing
 - Large bundle sizes
 - Accounting for temperature rating
 - Accounts for cable design performance
 - Reasonable worst case environmental conditions

However...

- The listing is not being enforced by code or any standard
- The listing is not aligned with current IEEE or TIA standards development
- Only compares temperature of cable bundle under power to cable temperature rating
- Does not include aging affects of operation at elevated temperatures
- Does not consider cable performance verification at elevated temperatures
- Confusion about who is allowed to install and how to install (the local authority has the final word)

COMPONENT CONSIDERATIONS

Cable: Twisted Pair Cable Factors for PoE

Gauge Size

Larger copper gauge = less heat and is better at mitigating heat rise

Cable Size

Larger cables better dissipate heat

28

Temperature rating

- Cables with a higher temp rating = better ability to mitigate heat rise
- 100% FEP (Plenum) insulation will have a higher rating than partial FEP or polyolefin insulation (Riser)

Other elements of cable construction

Shielded products dissipate heat down the length of the cable so improve capability

Cable: Power Efficiency

Power Efficiency Per 100m Length

- ➤ Think about the application
 - ➤ High-speed Data vs. High power vs. Mix
 - ➤ AWG more important than performance category?
- ➤ If main application is high power, high-performance category may not provide best ROI

Cable: Temperature Rise

Bundle

Higher Temp = Higher Attenuation

Higher Attenuation = Signal loss

Signal Loss = Shorter Channel Distance

Temperature Rise in 100 Cable

Cable: Temperature Rise

	Cat 5E	Cat 5E+	Cat 6A	Cat 6
AWG	22	22	23	23
Design	UTP	UTP	F/UTP	UTP
Energy Savings (W)	300	300	90	0
Temperature Increase (°F)	+13	+10	+13	+20

- 100 cables in bundle
- 100 meters
- 100W for 5 days

Cable: Temperature Rise

Energized cable has an impact on lifespan of cable materials

FEP insulation yields longest system lifespan

Promotes longest life for powered devices

Top Challenges of Implementing Cost-Efficient 4PPoE (IEEE 802.3bt) Cable Solutions

Cable Sample #2 with Polyolefin insulation after 10 days at 120°C

Connectivity: Design Considerations for PoE

- Interface contact displacement (spark gap)
 Prevent arc damage
- Increase electrical area for power Support higher current
- Improved housing cavity
 Withstand usage, extended life cycle, improved electrical performance
- Improved cavity air flow Heat dissipation
- Power transfer heat dissipation Support higher current

Connectivity Design Considerations

Spark Gap Concerns

Spark Gap Concerns When Un-mating Under PoE Load

 Connectivity designs that locate the last point of contact away from the fully mated connection protected area of the mated connection from any arch damage

Connectivity Design Considerations

➤ IEC 60512-99 recommendations support 1 amp on each circuit path

802.3af supports a max of 350mA 802.3at supports a max of 600mA 802.3bt projected max of 960mA

- > 960mA is dangerously close to 1 amp
 - Connectivity should be designed to support more than 1A
- ➤ Pick connectivity ready for emerging devices & designed to withstand the stressors usage and extended life cycles.

IMPACT ON CHANNEL

Challenges for the network

- > Delivering up to 100 watts of power while......
 - Maximizing energy efficiency
 - Maintaining data integrity
 - Maximizing life span of cabling
- New Pair to Pair Unbalanced DCR limits required in the standard
- Justifying Capex & ROI

High power impact on data transmission

Cabling Performance Margins under Power Load

TIA 568-C.2 Category 5E performance margins with applied IEEE802.3bt PoE power at Ambient Room Temperature (25° C)

	Time to the control of the control o											
		IEE	E 802.3b	t PoE	TIA	Margins						
Γ		Power	Power	Power			IL (dB)					
ı	Test	Source	Received	Efficiency	NEXT (dB)	RL (dB)	@100	ACR (dB)				
L		(W)	(W)	(%)			MHz					
Е	1	0	NA	NA	10.09	5.54	6.68	11.62				
	2	100	90.24	90.24	10.27	5.6	7.02	12.41				
			Margin Dif	ferences	0.18	0.06	0.34	0.79				

TIA 568-C.2 Category 5E performance margins with applied IEEE802.3bt PoE power under maximum TSB-184-A Elevated Temperature rating (60° C)

	IEEE	802.3bt	PoE	TIA	568-C.2	Margins	
Test	Power Source	Power Received	Power Efficiency	NEXT (dB)	RL (dB)	IL (dB) @100	ACR (dB)
	(W)	(W)	(%)			MHz	
3	0	NA	NA	10.64	6.88	5.82	12.34
4	100	89.22	89.22	10.63	6.35	4.92	12.32
		Margin Di	fferences	0.01	0.53	0.9	0.02

Verify Components and Test Channels

CASE STUDIES

Example based on 25,000 sq. ft.

Connected Lighting TCO with controls

	PoE-LED (Central/Closet)	PoE-LED (De- central/Ceiling)	AC-LED	AC-FL
Total CAPEX	\$193,132	\$219,304	\$236,967	\$188,477
Per Square Foot	\$7.73	\$8.77	\$9.48	\$7.54
Cost Delta (relative to AC-LED)	-18.5%	-7.5%	0.0%	-20.5%
Total OPEX	\$88,177	\$86,284	\$88,046	\$190,369
Per Square Foot	\$3.53	\$3.45	\$3.52	\$7.61
Per Square Foot (per year)	\$0.35	\$0.35	\$0.35	\$0.76
Cost Delta (relative to AC-LED)	0.1%	-2.0%	0.0%	116.2%
Total INVESTMENT	\$281,309	\$305,588	\$325,012	\$378,846
Per Square Foot	\$11.25	\$12.22	\$13.00	\$15.15
Per Square Foot (per year)	\$1.13	\$1.22	\$1.30	\$1.52
Cost Delta (relative to AC-LED)	-13.4%	-6.0%	0.0%	16.6%

Case Study: The Sinclair Office Building

Case Study: The Sinclair Office Building

	YE 2016	YE 2017
jan	316,866	286,86
feb	272,376	248,14
mar	268,707	253,06
apr	291,208	272,66
may	259,108	238,54
jun	280,267	262,49
jul	328,715	312,00
aug	326,295	272,52
sep	316,320	300,11
oct	310,155	189,92
nov	274,787	172,12
dec	266,411	154,82

Conclusions

- Think differently
 - What performance do you actually need?
 - 1G vs. 10G
 - CAPEX / ROI

Fast Fact:
Wire Gauge Size Drives Energy Efficiency

Conclusions

- Know Application
- Work with manufacturing partner

The Real Impact of High-Power PoE on Your IP Network

Jason Finnegan (jason.finnegan@legrand.us)
Cindy Montstream (cindy.montstream@legrand.us)
Amir Sekhavat (amir.sekhavat@spsx.com)

